Tubes et raccords en résine Epoxy armée de fibres de verre Bondstrand série 4000

à jonction collée Quick-Lock

pour application industrielle corrosive

Domaines d'application

Drains acides

Tuyauteries pour installations chimiques

Boues corrosives

Alimentaire Géothermie

Acides non-oxydants

Agréments

Réglementations américaines fédérales 21 CFR 175.105 et 21 CFR 177.

2420 pour le transport de produits alimentaires.

Performance

Pression de service de 10 à 31 bar (1 à 3.1 MPa) selon le diamètre du tube.

Résiste au vide total dans la plupart des diamètres lorsqu'il est correctement fixé et remblayé.

Températures de fonctionnement jusqu'à 150°C (300°F) et températures de service continues jusqu'à 121°C (250°F), selon les fluides. Les températures inférieures à zéro n'auront pas d'effets négatifs sur les propriétés mécaniques. Pour des températures au-delà de 121 ou 150°C, consulter votre représentant Ameron.

Excellente résistance à la corrosion couvrant un large éventail de températures. Se référer au Guide de Corrosion Bondstrand FP132 pour des applications spécifiques.

Ne nécessite pas de points d'ancrages à température de service ambiante s'il est correctement installé, dans la plupart des sols.

Le chemisage (liner) intérieur très lisse produit un coefficient d'Hazen-Williams de 150 pour peu de pertes de charge et des coûts de pompage réduits.

Modes de raccordement

Système Quick-Lock[®]: Joint adhésif avec un blocage intégral du tube dans la tulipe pour des cotes d'encombrement précises et prévisibles.

Brides et raccords à brides.

Manchons mécaniques (la température et les propriétés de résistance chimique du système peuvent être moindres).

Description

Tubes

Résine Epoxy renforcée de fibre de verre par enroulement filamentaire avec un chemisage (liner) intégral renforcé riche en résine de 1.3 mm (0,05 inch).

Diamètre
nominal du tube

Désignation ASTM

(in)	(mm)	(D2996)
1	25	RTRP-11FE-1112
1½	40	RTRP-11FE-1114
2-6	50-150	RTRP-11FE-1112
8-16	200-400	RTRP-11FE-1113

Raccords

Fournis avec un chemisage renforcé du même matériau que le tube.

Tés

Coudes 90° et 45°

Croix

Tés latéraux à 45°

Manchons mâles et femelles

Réductions concentriques

Raccords moulés

Brides réduites

Bouchons mâles et bouchons femelles

Rrides

Par enroulement filamentaire du DN 25 à 400 mm (1" à 16"). Moulées par compression du DN 50 à 300 mm (2" à 12").

Brides pleines

Moulées par compression du DN 50 à 300 mm (2" à 12").

Réductions moulées et bouchons mâles

Moulées par compression du DN 50 à 300 mm (2" à 12").

Selles bossages

Avec inserts taraudés en inox 316 de DN 8 à 40 mm.

Adhésifs thermodurcissables

RP-34 Epoxy à deux composants pour assemblage sur site.

Raccords

Tous les diamètres

Coudes

Tés

Brides et brides pleines

Réductions

Manchons mâles et manchons femelles

Du DN 50 à 300 mm (2" à 12")

Bouchons, réductions et brides réduites moulés par compression.

Bouchons femelles

Croix

Tés latéraux

Les longueurs utiles des raccords avec extrémités Quick-Lock des DN 50 à 300 mm sont celles des raccords en acier à souder en bout à bout selon l'ANSI B16.9.

Les extrémités à brides sont selon l'ANSI B16.1 et B16.5 pour le modèle de perçage et les dimensions du face-à-face pour les brides 150 livres.

Longueurs des tubes

Diamètre

nomina	l du tube	Longueurs aléatoires		
(in)	(mm)	(ft)	(m)	
1-1½	25-40	10	3	
2-8	50-200	20, 30, 40	6, 9, 12	
10-16	250-400	20, 40	6, 12	

Dimensions des tubes et poids

_	Diamètre nominal du		.*		nominale de la section		ion **	Doide	lu tuba
	tube	inter		par	OI .	moye		Poids c	
(in)	(mm)	(in)	(mm)	(in)	(mm)	(in ²)	(mm ²)	(lb/ft)	(kg/m)
1	25	0.98	25	0.169	4.3	0.60	390	0.4	0.6
1½	40	1.50	38	0.214	5.4	1.11	730	0.8	1.2
2	50	2.10	53	0.160	4.1	1.13	730	8.0	1.2
3	80	3.22	82	0.160	4.1	1.70	1100	1.1	1.7
4	100	4.14	105	0.206	5.2	2.73	1760	1.9	2.8
6	150	6.20	159	0.206	5.2	4.06	2620	2.8	4.2
8	200	8.22	209	0.229	5.8	5.83	3760	4.1	6.1
10	250	10.35	263	0.229	5.8	7.31	4710	5.1	7.7
12	300	12.35	314	0.229	5.8	8.69	5610	6.1	9.1
14	350	13.56	344	0.250	6.3	10.40	6680	7.4	11.0
16	400	15.50	394	0.286	7.3	13.40	8630	9.6	14.0

L'épaisseur minimale de paroi ne sera pas inférieure à 87,5% de l'épaisseur nominale en accord avec l'ASTM D2996.

Performance des tubes

Diamètre nominal du tube		Pression nomin	ale interne [*]	Pression limite externe**		
(in)	(mm)	(psig)	(Mpa)	(psig)	(Mpa)	
1	25	600	4.12	7612	52.5	
1½	40	550	3.79	6103	42.1	
2	50	450	3.10	635	4.38	
3	80	320	2.21	174	1.20	
4	100	350	2.41	246	1.70	
6	150	250	1.72	71	0.49	
8	200	220	1.52	48	0.33	
10	250	175	1.21	24	0.17	
12	300	150	1.03	14	0.10	
14	350	150	1.03	15	0.10	
16	400	150	1.03	17	0.12	

A 93°C (200°F) en utilisant l'adhésif RP-34. Pour une utilisation soutenue au-dessus de 93°C (200°F), réduire les valeurs linéairement à 50% de 93°C (200°F) à 121°C (250°F). Au-dessus de 121°C (250°F), réduire les valeurs linéairement à 0 jusqu'à 149°C (300°F).

Utiliser ces valeurs pour calculer les poussées longitudinales.

 $^{^{^{**}}}$ A 21°C (70°F). A réduire linéairement à 90% à 66°C (150°F) et à 85% à 121°C (250°F).

Performance des raccords $^{^{\star}}$

_	iamètre minal du			Réducti concentrio		Brides plei	ines ^{**} et
	tube	Coudes	et tés	bride		selle	
(in)	(mm)	(psig)	(Mpa)	(psig)	(Mpa)	(psig)	(Mpa)
1	25	300	2.07	600	4.14	150	1.03
11/2	40	300	2.07	550	3.79	150	1.03
2	50	300	2.07	450	3.10	150	1.03
3	80	275	1.89	350	2.41	150	1.03
4	100	200	1.38	350	2.41	150	1.03
6	150	175	1.21	250	1.72	150	1.03
8	200	150	1.03	225	1.55	150	1.03
10	250	150	1.03	175	1.21	150	1.03
12	300	150	1.03	150	1.03	150	1.03
14	350	150	1.03	150	1.03	150	1.03
16	400	150	1.03	150	1.03	150	1.03

Se référer au Guide des Raccords pour les niveaux de pression sous haute température.

Diamètre nominal du

tube		Tés laté	raux	Croix	Croix	
(in)	(mm)	(psig)	(Mpa)	(psig)	(Mpa)	
1	25					
1½	40					
2	50	275	1.89	150	1.03	
3	80	250	1.72	150	1.03	
4	100	200	1.38	150	1.03	
6	150	150	1.03	100	0.69	
8	200	150	1.03	100	0.69	
10	250	150	1.03	100	0.69	
12	300	150	1.03	100	0.69	
14	350	150	1.03			
16	400	150	1.03			

Propriétés physiques types

Propriété du tube	Unités	Valeurs	Méthode ASTM
Conductivité thermique	Btu.in/(h.ft ² .°F)	2.3	C177
	W/(m.K)	0.33	
Dilatation thermique linéaire	10 ⁻⁶ in/in/°F	10	D696
	10 ⁻⁶ mm/mm/°C	18	
Coefficient d'écoulement	Hazen-Williams	150	
Rugosité absolue	10 ⁻⁶ ft	17.4	
	10 ⁻⁶ m	5.3	
Densité	g/cm ³	1.8	D792
	lb/in ³	0.065	

^{**} Jusqu'au DN 300 mm seulement.

Propriétés mécaniques types

		70°F	100°F	
Propriété du tube ¹	Unités	21°C	38°C	Méthode ASTM
Circonférentielle				_
Contrainte de traction au	10 ³ psi	18.5		D1599
perlage	MPa	128		
Module de traction	10 ⁶ psi	3.65	3.20	
	GPa	25.2	22.1	
Coefficient de Poisson		0.56	0.68	D2105
Longitudinale				
Résistance à la rupture par	10³ psi	8.50	6.90	D2105
traction	MPa	58.6	47.6	
Module de traction	10 ⁶ psi	1.60	1.24	D2105
	GPa	11.0	8.60	
Coefficient de Poisson		0.37	0.41	D2105
Poutre				
Module d'élasticité apparent	10 ⁶ psi	1.70	1.08	D2925
	GPa	11.7	6.90	
Base d'étude hydrostatique	10 ³ psi	6.0		D2992
(cyclique) ²	MPa	41.4		

Dia	mètre						
nom	inal du		_		_	Moment d	
tı	ube	Facteur de	rigidité ³	Rigidité du	u tube ³	la po	utre ⁴
(in)	(mm)	(lb.in)	(N.m)	(psi)	(MPa)	(in ⁴)	(10^6mm^4)
1	25	440	50	14300	98.6	0.074	0.031
11/2	40	1021	115	10500	72.4	0.315	0.131
2	50	371	42	1677	11.6	0.49	0.20
3	80	371	42	602	3.5	1.68	0.69
4	100	894	101	676	4.0	4.84	2.01
6	150	894	101	176	1.2	15.9	6.61
8	200	1288	146	114	0.78	40.1	16.7
10	250	1288	146	68	0.40	78.6	32.7
12	300	1288	146	35	0.24	132	55.0
14	350	1759	199	36	0.25	194	80.9
16	400	2761	312	38	0.26	338	141

- Basée sur l'épaisseur de paroi structurelle.
 A 66°C (150°F).
 Selon l'ASTM D2412.

- 4) Utiliser ces valeurs pour calculer l'espacement possible de supportage.

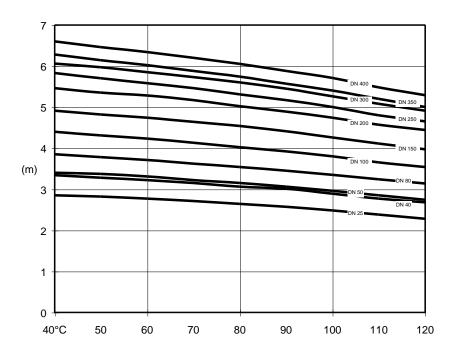
Installations enterrées

Charges roulantes

Supporte une charge roulante H20 d'au moins 7250 kg (16,000 lb) par essieu à condition d'être correctement posé dans du sable compacté dans des sols stables et recouverts par au moins 1 m (3 ft) de remblai.

Ancrages

La plupart des installations enterrées ne nécessitent pas de points d'ancrage. Consulter Ameron pour les recommandations pour des systèmes à haute température.

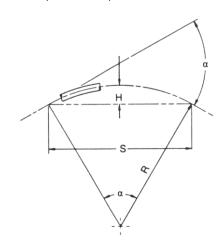

Couverture de remblai pour tube enterré

Dia	amètre					_	
nor	ninal du		Couvert	ture de remb	olai maxii	mum [*]	
	tube	100 psi ^{**} 0.6	69 Mpa	125 psi 0.8	36 Mpa	150 psi 1.0	03 Mpa
(in)	(mm)	(ft)	(m)	(ft)	(m)	(ft)	(m)
2	50	30	9.1	30	9.1	30	9.1
3	80	22	6.7	22	6.7	21	6.4
4	100	24	7.3	23	7.0	22	6.7
6	150	21	6.4	20	6.1	19	5.8
8	200	21	6.4	20	6.1	18	5.5
10	250	22	6.7	19	5.8	16	4.9
12	300	22	6.7	17	5.2	12	3.7

^{*} Basé sur une densité de sol estimée à 1923 kg/m³ (120 lb/ft³) et un module de réaction du sol de 1000 psi (6.9 N/mm²).

Longueurs des intervalles

Espacement maximum de supportage pour les tuyauteries Bondstrand[®] série 4000 à différentes températures. Les valeurs sont basées pour une déflexion de 12 mm (½ pouce) entre deux supports pour un fluide de gravité spécifique = 1.0. Pour des intervalles complètement continus, les valeurs peuvent être augmentées jusqu'à 20%. Diminuer les valeurs de 20% pour des intervalles simples.



^{*} Pression de service interne.

Rayon de courbure

	mètre inal du	Davan da a	ourburo	Flèche maximum (H) pure pour corde (S) de 30		Angle de courbure
	ube	Rayon de c	ourbure	m (10	. ,	
	ubc .			,	0 11)	α
<u>(in)</u>	(mm)	(ft)	(m)	(ft)	(m)	(deg)
1	25	45.2	13.8	24.9	7.6	127
1½	40	66.4	20.2	17.9	5.5	86
2	50	83.1	25.3	14.6	4.5	69
3	80	123	37.4	10.1	3.1	47
4	100	158	48	7.9	2.4	36
6	150	233	71	5.4	1.6	25
8	200	304	93	4.1	1.3	19
10	250	379	116	3.3	1.0	15
12	300	450	137	2.8	0.85	13
14	350	494	151	2.5	0.76	12
16	400	564	172	2.2	0.67	10

 $^{^{\}star}$ Ne pas courber le tube avant que l'adhésif ait polymérisé. A certaines températures, des courbures plus élevées peuvent créer des concentrations de contraintes excessives.

Conversions

1 psi = 6895 Pa = 0.07031 kg/cm²

1 bar = 10⁵ Pa = 14.5 psi = 1.02 kg/cm² 1 MPa = I 0⁶ Pa = I45 psi = 10.2 kg/cm² 1 GPa = 10⁹ Pa = 145 000 psi = 10 200 kg/cm²

1 in = 25.4 mm

1 ft = 0.3048 m

1 lb.in = 0.113 N.m

1 Btu.in/(h.ft².°F) = 0.1442 W/(m.K) $^{\circ}$ C = $^{5}/_{9}$ (°F-32)

Remarque importante

Cette notice, les indications et recommandations qu'elle contient ont été élaborées à partir d'informations dont on peut raisonnablement penser qu'elles sont fiables. Cependant, des circonstances telles que des variations de l'environnement, dans l'application de nos produits ou encore dans leur montage, ou des changements dans les méthodes de mise en oeuvre, ou encore une extrapolation des informations fournies pourraient entraîner des résultats différents de ceux escomptés.

Ameron ne s'engage à garantir ni ne garantit que ce soit expressément ou implicitement l'exactitude, l'adéquation ou le caractère complet des recommandations et indications contenues dans la présente notice, y compris pour ce qui est de la garantie de la qualité marchande ou de la garantie de résultat. Ameron n'encourra aucune responsabilité de quelle que sorte que ce soit en relation avec cette notice, les indications ou les informations qu'elle contient.

Tous commentaires au sujet de ce document sont les bienvenus. Merci de prendre contact avec notre Directeur Technique, Ameron Fiberglass Pipe Division.

Cette documentation est la traduction de la documentation anglaise FP215 O du 04/94. SMT le 18/10/2000 (révisée le 22/01/2013).